牛顿以二项式定理作为基礎发明出了微积分[10]。其在初等数学中应用主要在于近似、估计以及证明恒等式等。
证明组合恒等式
编辑
二项式定理给出的系数可以视为组合数
(
n
k
)
{\displaystyle {n \choose k}}
的另一种定义。 因此二项式展开与组合数的关系十分密切。 它常常用来证明一些组合恒等式。
(1)证明
∑
k
=
0
n
(
n
k
)
2
=
(
2
n
n
)
{\displaystyle \sum _{k=0}^{n}{n \choose k}^{2}={2n \choose n}}
可以考虑恒等式
(
1
+
x
)
n
(
1
+
x
)
n
=
(
1
+
x
)
2
n
{\displaystyle (1+x)^{n}(1+x)^{n}=(1+x)^{2n}}
。 展开等式左边得到:
∑
i
=
0
n
∑
j
=
0
n
(
n
i
)
(
n
j
)
x
i
x
j
{\displaystyle \sum _{i=0}^{n}\sum _{j=0}^{n}{n \choose i}{n \choose j}x^{i}x^{j}}
。 注意这一步使用了有限求和与乘积可以交换的性质。 同时如果展开等式右边可以得到
∑
k
=
0
2
n
(
2
n
k
)
x
k
{\displaystyle \sum _{k=0}^{2n}{2n \choose k}x^{k}}
。 比较两边幂次为
k
{\displaystyle k}
的项的系数可以得到:
∑
i
=
0
k
(
n
i
)
(
n
k
−
i
)
=
(
2
n
k
)
{\displaystyle \sum _{i=0}^{k}{n \choose i}{n \choose k-i}={2n \choose k}}
。 令
k
=
n
{\displaystyle k=n}
,并注意到
(
n
i
)
=
(
n
n
−
i
)
{\displaystyle {n \choose i}={n \choose n-i}}
即可得到所要证明的结论。
(2)證明
∑
k
=
0
n
(
n
k
)
=
2
n
{\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}}
因為
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
−
k
y
k
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}}
令
x
=
y
=
1
{\displaystyle x=y=1}
,代入上式,得
(
1
+
1
)
n
=
2
n
=
∑
k
=
0
n
(
n
k
)
⋅
1
n
−
k
⋅
1
k
=
(
n
0
)
+
(
n
1
)
+
(
n
2
)
+
⋯
+
(
n
n
)
=
∑
k
=
0
n
(
n
k
)
{\displaystyle {\begin{aligned}(1+1)^{n}&=2^{n}=\sum _{k=0}^{n}{n \choose k}\cdot 1^{n-k}\cdot 1^{k}\\&={n \choose 0}+{n \choose 1}+{n \choose 2}+\cdots +{n \choose n}\\&=\sum _{k=0}^{n}{n \choose k}\end{aligned}}}
多倍角恒等式
编辑
在复数中,二项式定理可以與棣莫弗公式結合,成為n倍角公式[11]。根據棣莫弗公式:
cos
(
n
x
)
+
i
sin
(
n
x
)
=
(
cos
x
+
i
sin
x
)
n
.
{\displaystyle \cos \left(nx\right)+i\sin \left(nx\right)=\left(\cos x+i\sin x\right)^{n}.\,}
通過使用二项式定理,右邊的表達式可以擴展為
(
cos
x
+
i
sin
x
)
2
=
cos
2
x
+
2
i
cos
x
sin
x
−
sin
2
x
,
{\displaystyle \left(\cos x+i\sin x\right)^{2}=\cos ^{2}x+2i\cos x\sin x-\sin ^{2}x,}
由棣莫弗公式,实部与虚部对应,能夠得出
cos
(
2
x
)
=
cos
2
x
−
sin
2
x
and
sin
(
2
x
)
=
2
cos
x
sin
x
,
{\displaystyle \cos(2x)=\cos ^{2}x-\sin ^{2}x\quad {\text{and}}\quad \sin(2x)=2\cos x\sin x,}
即二倍角公式。同樣,因為
(
cos
x
+
i
sin
x
)
3
=
cos
3
x
+
3
i
cos
2
x
sin
x
−
3
cos
x
sin
2
x
−
i
sin
3
x
,
{\displaystyle \left(\cos x+i\sin x\right)^{3}=\cos ^{3}x+3i\cos ^{2}x\sin x-3\cos x\sin ^{2}x-i\sin ^{3}x,}
所以藉棣莫弗公式,能夠得出
cos
(
3
x
)
=
cos
3
x
−
3
cos
x
sin
2
x
and
sin
(
3
x
)
=
3
cos
2
x
sin
x
−
sin
3
x
.
{\displaystyle \cos(3x)=\cos ^{3}x-3\cos x\sin ^{2}x\quad {\text{and}}\quad \sin(3x)=3\cos ^{2}x\sin x-\sin ^{3}x.}
整體而言,多倍角恒等式可以寫作
cos
(
n
x
)
=
∑
k
even
(
−
1
)
k
2
(
n
k
)
cos
n
−
k
x
sin
k
x
{\displaystyle \cos(nx)=\sum _{k{\text{ even}}}(-1)^{\frac {k}{2}}{n \choose k}\cos ^{n-k}x\sin ^{k}x}
和
sin
(
n
x
)
=
∑
k
odd
(
−
1
)
k
−
1
2
(
n
k
)
cos
n
−
k
x
sin
k
x
.
{\displaystyle \sin(nx)=\sum _{k{\text{ odd}}}(-1)^{\frac {k-1}{2}}{n \choose k}\cos ^{n-k}x\sin ^{k}x.}
e级数
编辑
數學常數e的定義爲下列極限值:[12]
e
=
lim
n
→
∞
(
1
+
1
n
)
n
.
{\displaystyle e=\lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n}.}
使用二项式定理能得出
(
1
+
1
n
)
n
=
1
+
(
n
1
)
1
n
+
(
n
2
)
1
n
2
+
(
n
3
)
1
n
3
+
⋯
+
(
n
n
)
1
n
n
.
{\displaystyle \left(1+{\frac {1}{n}}\right)^{n}=1+{n \choose 1}{\frac {1}{n}}+{n \choose 2}{\frac {1}{n^{2}}}+{n \choose 3}{\frac {1}{n^{3}}}+\cdots +{n \choose n}{\frac {1}{n^{n}}}.}
第
k
{\displaystyle k}
项之總和為
(
n
k
)
1
n
k
=
1
k
!
⋅
n
(
n
−
1
)
(
n
−
2
)
⋯
(
n
−
k
+
1
)
n
k
{\displaystyle {n \choose k}{\frac {1}{n^{k}}}\;=\;{\frac {1}{k!}}\cdot {\frac {n(n-1)(n-2)\cdots (n-k+1)}{n^{k}}}}
因為
n
→
∞
{\displaystyle n\to \infty }
时,右邊的表达式趋近1。因此
lim
n
→
∞
(
n
k
)
1
n
k
=
1
k
!
.
{\displaystyle \lim _{n\to \infty }{n \choose k}{\frac {1}{n^{k}}}={\frac {1}{k!}}.}
這表明
e
{\displaystyle e}
可以表示为[13][14]
e
=
∑
k
=
0
∞
1
k
!
=
1
0
!
+
1
1
!
+
1
2
!
+
1
3
!
+
⋯
.
{\displaystyle e=\sum _{k=0}^{\infty }{\frac {1}{k!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+\cdots .}